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LETTER TO THE EDITOR 

Path integrals for quantum algebras and the classical limitt 

Demosthenes Elhast: 
Departamento de Fisica Teorica Facultad de Fisica Univmidad de Valencia, E461W Burja- 
sot, Valenci4 Spain 

Received 14 Januiuy 1993 

Abstraet Coherent stales path integral formalism for the simplest qwtm algebras. q- 
oscillator, SUq(2) and SU,(I, 1) is introduced. In the classical limit, canonial SUucture is 
derived with a modified symplectic and RiemaMian metric. Nowonstant deformanon induced 
cumatwe for the phase spaces is obtained. 

Aiming for a better understanding of the notion of quantum groups and algebras [l- 
31, it is desirable to try to elucidate the geometrical properties of these shuctures. The 
analogous properties of Lie groups emerge from the study of these groups as transformation 
groups in certain spaces. The symplectic and Riemannian properties of classical groups are 
well known and the purpose of this letter is to attempt to ask similar questions when q- 
deformation is present. Confronted with the vast generality of such a problem we have 
chosen to study three of the simplest quantum algebras, namely the deformed Weyl- 
Heisenberg algebra (q-WH) [4,5] the SU,(2) and SU,(l, 1) algebras. To this end we will 
employ the tools of path integrals and coherent states, adapted to the qdeformed situation. 

Usual coherent states (cs) [6,7] for simple Lie groups are widely used in the path integral 
formalism especially for Hamiltonians which are elements of the corresponding Lie algebra 
of the groups. The same formalism also provides in the classical limit, regarded as the 
case where the Planck constant is taken to be small compared to the action, the canonical 
equations of motion in the phase spaces, which for the groups we are concerned with 
here are the coset spaces WH/U(I) % It*, SU(2)/U(l) = Sz and SU(1, l)/U(I) % SI.'. 
Obviously in the cases of SU(2) and SU(1,I) groups the ensuing coset spaces, i.e. sphere 
and hyperboloid are generalizations of the usual plane phase space of the harmonic oscillator 
and this gives rise to a K i l e r  manifold structure with a modified canonical symplectic 2- 
form [8]. 

The deformed cs [5,9], which will be used here to build up the propagator, satisfy the 
completeness relation and are obtained by acting on some lowest weight with a displacement 
operator which involves either the deformed, or alternatively the ordinary, exponential 
[9,10]. This second possibility, as will be seen in the following, has some importmt 
technical merits in the construction of path integrals and in the study of the eigenvalue 
problem of the q-cs. 

A brief summary of our results is as follows: in a very similar manner to the changes 
of the geometrical structure of the harmonic oscillator phase space occurring when we pass 
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to the SU(2) and SU(1, 1) phase spaces, the q-deformation of the above algebras modifies 
their corresponding phase spaces, as is shown by evaluating the symplectic and Riemann 
metrics. Also the computation of the curvature scalar reveals that a q-deformation induces 
a non-constant curvature in each of the above phase spaces. 

Deformed coherent states for the q-WH algebra are defined by (a E C) 

where the q-oscillator commutation relations are 

UqU: - U : U ~  = [ N  + 11 - [NI [N, U:] =U,' [N, ~ q l  -a9 (2) 

while 

and the following symbols are used (q =e"): 

with the q-exponential function e: = Czoxn/[n]! 1111. The normalized states la), = 
( I / m ) [ a ) ,  with ,(&[la), =>ruI2 are eigenstates of the annihilation operator u,la), = 
ala), and satisfy the completeness relation '[I2441 

. ~~ 

where the integral is regarded as the Jackson's q-integral 1151. These q c s  are minimum- 
uncertainty states in the sense that they minimize the [q,. p,] commutator 

A4.7AP9 = +19(alIqqr Pnlla),l 
~~ 

where a, = ( I / f i ) ( q ,  + ip,) and U,' = (I/-&)@ - ip,J. 

j = l/Z, I ,  3/2,. . . are defined by (z E C) 
The deformed cs for the SU,(2) algebra, related to representations characterized by 

where the q-binomal is defined as 

The generators involved in the definition satisfy the commutation relations 

[J,", J3 = kJ4' [q, 4-1 = [ 2 J 3  



Letter to the Editor 

while 
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The factor (t f \z\~$ = & \ z ) ~  normalizes the states, (z)~ = ( I { ~ ) ( Z ) C I  and using 
the general formula 

derived with the help of [2m + 11 = q2', is written as 

The normalized 9-13 are complete with a resolution of unity 

where again the Jackson's 9-integral is used. 
It is also interesting that the 9-cs satisfy the eigenvalue problem 

(J; + (9' +q-')zlJ;l - z"J,+)Iz), = 0 (8) 

which upon taking the zero deformation limit reduces to its analogous 9 = 1 equation which 
serves as a definition, up to a phase factor, for the SU(2) coherent state [7]. For future use 
we also record the formula 

J ~ I Z ) ~  = 8 [ j  k @z)q. 

IKq3, K 3  = *K; [K;, K;] = 4 2 d l  4 (10) 

(9 )  

The coherent states related to the quantum SU(1,l) 

and associated with the discrete representations characterized by k = 1,3/2,2,5/2, . . . are 
defined by the generators 

in a manner similar to the previous cases 
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where 
two states 

E D' = [/El2 < q'-'). Wth the normalization factor obtained from the overlap of 

the normalized states are complete 

and obey the equations 

w; + (4' + 4-k)m:l +f2K,f)It)q = 0 

q l 6 ) q  =e%: r k l l 6 ) q .  

and 

We now proceed with the q a  propagator utilizing the completeness relations of the 
q C S .  Let A = a, z, 4, the transition amplitude between coherent states takes the form 

where 

and E = 
imoortar 

It " - t ' ) /L ,  while H stands for the Hamiltonian the explicit form of wt 
In the classical limit, considered here as the case where fi << action, while the 

deformation parameter q is held fixed, assuming that At-] 2 At - AAe, then from the 
definition of the cs and the short-time approximation it follows that 

where i = a, J, K and the bar denotes complex conjugation. In the limit where L + 00 

and E -+ 0 the RHS of the above expression is written formally as $(AI  (AIT,.+lA) - 
A ( A / q - I A ) ) d t ,  where the overdot denotes the time derivative. In this limit 

*"-,' 
K = Dp,(A) exp [i dt L(A, A; A i)] s 0 

and the Langrangian is given by 
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where 'H = (AIHIA), from which we extract the canonical 1-form 

(17) 
ifi 
2 

Q =--((AlT'lA)dA -,(AlTJA)dA). 

By using the properties of the q-cs as above we obtain for the three cases ((.) E (Al .  /A)) 

and 

Explicitly evaluating the expectation values in the Langrangians, we find that they are 
modified with respect to their q = 1 value [16-19], due to the q-deformation. Let US 
further recall the fact that in the non-deformed cases a, z and are the coordinates (for 
another attempt to define path integration with non-commuting coordinates see 1201) of the 
respective cosets (generalized phase spaces): WHJU(1) e R', SU(Z)/U(l) X SI CP' and 
SU(1, l)/U(I) x SI.' e CP'.' and that these spaces are KZhler manifolds with respective 
potentials 0 = &(ala), (1/2j)!n(zlz) and (1/2k)tn(elt), where the states are the usual 
coherent states of these groups and j and k are the Casimir and Bargmann indices labelling 
the representations. This potential provides, after exterior differentiation, the canonical 
1-form and the invariant metric ds2 = a,aA@dAdA together with the symplectic 2-form 
o = iaAaz0dA A dA, where a, = a/aa [SI. 'h the presence of deformation, however, 
the involvement of q-cs, changes the Klihler potential, which in turn changes the mehic 
distance and the symplectic structure of the phase space. We find that 

. 
dr ' - - ( ( i  T-T') - (q-)(?;+))dAdX (194 

and 

(19b) 
i 

0. - -((T-T.+) - (q-)(q+))dA AdA. 
I -  2 

The explicit evaluation of the metrics for an arbitrary q deformation parameter will be 
postponed until a future study and here we will continue by ObSeNing that on physical 
grounds one would expect that the physical mechanism of deformation, albeit elusive at 
present, has quantitatively a rather perturbative character on the non-deformed models to 
which it would apply. 

Reasoning in this way we will proceed by expanding all the operators and states involved 
in powers of y (q = eY) and keep only the first-order terms. 

Using the expansion 

Y *  Y 4  [XI = x + -(x - 2) + -(7X - lox3 + 3 2 ) ~ + ,  . . 
6 360 
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and the deforming maps connecting the deformed generators of our algebras with their non- 
deformed counterparts (see for example [21]) we can express the cs generating operators 
in power series of the deformation parameter as follows 

Ta' =a+ + 2{(1 - NZ)U+} + .. 
12 

T: = J+ - 2 - ( ( 2 J 3  + 2 j  - ~ ) J + J  + . . . @Ob) 
12 

and 

(ZOC) TK+ = K++ - { ( 2 ~ ~ + 2 k +  YZ 1 ) ~ + } + . . .  
12 

where a+* J+ and K+ etc. without a 9 subscript are the ordinary step operators of the 
respective algebras. 

Next we employ the Backer-Champbeil-Hausdorff (BCH) formula (see, for exam- 
ple. [221) 

exp(A + B )  = exp A exp B exp Cz exp C3.. . 

with 

which is valid for any two non-commutative operators, to provide to first order the following 
relations between (un-normalized) q-cs, la)q, I&, and their respective non-deformed 
la), 12) and IO: 

(22b) 
Y 2  

IZ), 2 iz) - - - ( 2 ~ 5 ~ 5 +  - 2.1+~ + (zj  - I)ZJ+}IZ) 12 

and 

z le) - $ p t K 3 K +  + ( Z K + ~ +  (2k + w K + ~ i o .  (224 

Utilizing these expansions we can now calculate the KMer potentials Qq and the metrics 
for each case. The symplectic 2-forms to first order in the parameter y are, for the three 
algebras of our study, as follows 
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and 

+ (zkZe+ l ) ( ~ l O ~ ’  - 5r 7 l ) ~ - ~  dti A d6’ (23b) 

where the upper sign corresponds to the SUq(2) case and the lower sign to the SUq(l, I), 
and correspondingly e = j or k and r =~ 121’ or 151’ and p = 1 + 121’ or 1 - 161’ 
when 0 = z or e .  Similarly the distance metric can be read from the above formulae by 
dropping the wedge products in the RHS. As was mentioned at the beginning of this letter 
the deformation manifests itself geometrically in the cosets of the groups, and moreover we 
now also note that the y z  proportional terms are dependent on the modulo of the projective 
coordinates, which implies an invariance under phase changes of the complex coordinates, 
for the additional terms in the metics induced by the deformation. 

As a further probe into the geometrical effects of the deformation we will take up the 
evaluation of the curvature scalar which for our Riemann metric derived from the Qq Kiihler 
potential given by the overlap of q-cs, is taken to be of the form 

1 

For the case of the q-oscillator we find 

R = y212(1 + 21aI2) 

and similar results hold for the other two cases. Obviously there is a non-zero position 
dependent curvature with rotational symmetry which tends to zero approaching the zero 
deformation limit. 

Before closing some remarks are in order; the way the Kiihler potentials and the 
Riemannian and symplectic metrics derivable from them, were introduced above, was all by 
analogy with the non-deformed case. In the non-deformed case however these metrics are 
invariant, and covariant, correspondingly under the respective canonical transformations 
associated with each algebra. These same canonical transformations will not however 
possess the right covariance properties when applied to the mebics derived above, due to the 
modifications of the latter by extra deformation terms (considering first-order deformation 
changes for simplicity). Generalized canonical transformations appropriate for the above 
deformed metrics are therefore required and we hope to take up this problem elsewhere. 

In conclusion, a geometrical understanding of the q-deformation of the oscillator, SU(2) 
and SU( 1.1) algebras has be investigated here using the q-cs path integrals. It is interesting 
to note that the association of curvature with non-co-commutation at the quantum group 
level has been discussed before 1231 and could probably be related to the curvature found 
here at the quantum algebra level, by the existing duality between quantum algebras and 
groups as Hopf algebras. Potential applications of the present results would include the use 
of quantum groups in addressing quantum mechanical problems in spaces of non-constant 
curvature, and some problems of this kind are now under study. 

I should like to thank M Chaichian, J R Klauder and P P Kulish for discussions and the 
anonymous referee for suggestions leading to the improvement of the letter. I also wish to 
thank DGICYT (Spain) for financial support. 
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